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Abstract

This note deals with Adem relations in the Dyer-Lashof algebra from
a modular invariant point of view. An algorithm is provided which has
two effects. Firstly, to calculate the hom-dual of an element in the Dyer-
Lashof algebra; and secondly, to find the image of a non-admissable element
after applying Adem relations. The advandage is that one has to deal
with polynomials instead of homology operations. Bockstein operations
are excluded.

1. Introduction

The aim of this work is to provide an algorithm for calculating Adem relations
in the Dyer-Lashof algebra using modular co-invariants. It is well known that
the hom-dual of both Steenrod, P, and Dyer-Lashof, R, algebras are related
with subalgebras of the so called extended Dickson algebras. The advantage of
using modular invariants is that Adem relations are overcome and hidden in their
structures.

Using relations between generators of the ring of Upper triangular invariants
and the Dickson algebra, an algorithm for finding the hom -dual for elements of
R’ is given, where R’ is a Hopf subalgebra of R containing elements which do



not involve Bockstein operations. This is the key point to provide the algorithm
described above. This algorithm is also useful in other applications related with
the Dyer-Lashof algebra. For example it provides a computational tool for the
transfer in the mod — p homology of the symmetric group, since its cohomology
is easier described using Dickson invariants. This algorithm becomes complicated
when applied to elements involving Bockstein operations. We note that the al-
gorithm mentioned above is a reformulation of May’s theorem 3.7, page 29, in
[1]:

The scheme of this note consists of three sections: sections 2 and 3 recall
well known facts about the Dyer-Lashof and Dickson algebras respectively; the
algorithms mentioned above are described in the last section.

2. The Dyer-Lashof algebra

Let us briefly recall the construction of the Dyer-Lashof algebra. The symbol p
stands for any prime number. Let F be the free graded associative algebra on
{e!, i >0} and {B€, i > 0} over K := Z/pZ with |¢!| = 2i and |Be’| = 2i —1. F
becomes a coalgebra equipped with coproduct ¢ : F' — F ® F given by

el =Y e @el and YBe =) BT Qe + D @ Be.

Elements of F are of the form e/ = B%e...3"e™ where I = ((€1,%1),. .-

(€n,1s)) with € = 0 or 1 and %; a non negative integer for j = 1, ... ,n. Let
I(I) denote the length of e’ and let the excess of e/ be denoted by ezc(e’) =
let| — e, — |e!'|(p — 1) where I’ = ((€2,12), ... (€n,in)); and oo, if I = (0, ..., 0).

F admits a Hopf algebra structure with unit » : K — F and augmentation

e : ' — K given by:
i 1, #i=0
~ ] 0, otherwise.

We define U = F/I,, where I, is the two sided ideal generated by elements of
negative excess. U is a Hopf algebra and if we let U[n] denote the set of all
elements of U with length n, then U[n] is a coalgebra of finite type.

We extend the previous construction by restricting the degrees and imposing
Adem relations. Let U’ be the subalgebra of U generated by {e®~V% 4 > 0}
and {B3e®=D¢ { > 0}. We denote these elements by @° and $Q* respectively,
and recall their degrees |@Q'| = 2i(p — 1) and |3Q"| = 2i(p — 1) — 1. Let B
be the quotient algebra of U’ by the two sided ideal generated by elements of
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negative excess, where exc(Q) = 2i; — e — |Q”|, with I = ((e1,%1), ... (€n,tn))
and I' = ((€,12), ... (€n,in)); and oo, if I = (0, ..., 0). B is a Hopf algebra with
the induced coproduct and B[n| a coalgebra as before.

Let I be the two sided ideal of B generated by allowing Adem relations every-
where.

Adem relations are given by:

Q@ =3 (-1 ((p B I;f__f) - 1) QrQF, ifr>ps;  (21)
- s 1\t (p——l)(k—s) T+s5— _
BQ = XD ‘“( ok — 7 )ﬁQ* Q"
Z(_l)r+k ((p _p'?gkr—_si - 1) QH-S_IC,BQ]C, if r > ps.

We denote R the quotient B/I and this quotient algebra is called the Dyer-
Lashof algebra. Finally, R is a Hopf algebra and R[n] is again a coalgebra.
By abuse of notation we use the same symbol for elements of B and R. Since
R[n] and B(n] are of finite type, they are isomorphic to their duals as vector
spaces and these duals become algebras. We shall describe these duals giving
an invariant theoretic description, namely: they are isomorphic to subalgebras
of rings of invariants over the appropriate subgroup of GL(n, K). We restrict
our study to subalgebras R’ < R and B’ < B such that no elements involving
Bockstein operations are allowed.

An element @ in R'[n] is called admissible, if there are no Adem relations
between its factors and primitive if Q7 = Q' ® Q° + Q° ® @'. Here Q°
means Q° [(I) times. Since the dual of a primitive is a generator, the algebraic
structure of the dual algebras is described by the primitives and their relations.
Next we discuss the primitives of B’[n], R'[n], and the primitive decomposition of
an admissible element. We follow May [1].

Let I, = (p%(p—1),...,(p - 1),1,0,...,0), where there are n — % zeros. Its
degree is |Qfin| = 2p*~1(p — 1) and exc(Q’i") = 0. Here 1 < i < n.

Let In_in = (P - 1), ..., (@ -1),p"% ...,p,1). Here1 < i < n
and is the number of p-th powers. The degree |Q/»-i»| = 2p™~(p* — 1) and the
exe(@—n)=0,if i< n,and 1ifi=mn.

Let the generators be as follows:

S =((QY), 0Zn
L= (@Bt LLd L
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Theorem 1. Let P'[n] be the free associative commutative algebra generated by
{ €nin / 1 <i<n. Then P'n] = R'[n]* as algebras.

3. The Dickson algebra

Let V* denote a K-dimensional vector space generated by {yi,...,yx} and 1 <
k < n. Let S, be the graded symmetric algebra of V"; S, = K [y1, -, ¥n| and
degree |y;| = 2 (if p = 2, then |y = 1).

The following theorems are well known:

Theorem 1. [2] SSI» := D, = K [dnp," -, dnn-1] is a polynomial algebra where
the degrees are |dm| =2(p" — p').

Theorem 2. [4] $2» .= H, = K[hgp_l),-”,h,(f_l)] is a polynomial algebra
where the degrees are |h;| = 2p'~!

The generators above are related as follows:

Let fi1 () = 1[I (z—wu), then fiy(z) = ¥ (—1)" 2P dpy, and hy =

ueVk-1 =0
[T (yx — u). Moreover,
ueVk—1
" its—js
doni= 3. H (h2- 1) (3.1)
1<n<—<jisns=
[3].

Let A = {A = (a;;) an nzn matrix such that a;; =0,1for 0 < 4,7 <n—1and
n—1

Z%] ai =n—i}. For each element of A we define an n x n matrix B(A) = (b;;) =
e

(b(o), e ,b(”‘”) such that b;; = ayp/~17stai+-+as Let us call this collection

E(A) = {B(4) | A€ A}, Let M = (mo, -+, mn—1) be a sequence of zeros or

powers of p. Let EM — {B(A) = (b.,'j) i A€ A and bij — a,ijmjpj‘l_5+“1j+"'+aaj}_
The following lemma is easily deduced from formula 3.1

_ 1

el A T 5 (B1)i-1 T ’

Lemma 3. [[di= Y [Ik . Here 1= | :

0o BecpM t=1 1



The Steenrod algebra acts naturally on D, and H,, because S, is a subalgebra
of H*(B(Z/pZ)"; Z/pZ). [7]

Theorem 4. (R'[n])* = D, as algebra over the Steenrod algebra and the isomor-
phism @ is given by ®(¢,_;,) = dnni. Herel <i < n.

4. Calculating the hom-duals and Adem relations

Under isomorphism & in theorem 4 we identify R'[n|* and D,. Let A : B — R be
the map which imposes Adem relations and A : B’[n] — R'[n] the induced map
between the respected coalgebras of length n.

= ZGI,JQJ

Let I = (g1,51," " ,€n,8n) and I; = (g;,8;,"**,€n, 8n) for 1 < j < n. Define
a total ordering by I < J, if exc(l;) < ezc(J;) for the smallest j such that
exc(l;) # exel(d;).

Let 7: D, — H, be the inclusion of the rings of invariants, then 7(d®) means
the decomposition of dK in H,. Firstly, we shall show that A* = % i.e. for any

Q! € B[n] and d¥ = Hdm € D,,

< d¥,A(Q") >=< i(d),Q" >

Here, < —, — > is the Kronecker product. This is done by studying all monomials
in B[n] which map to primitives in R'[n] after applying Adem relations.

n(K)
Let n(K) = Y m,. Let ¥, : B'[n] = ® R'[n] be the iterated coproduct
n(K) times.

Ya)@ = T 2QM 8- @Qhw, Y Ju=J
All/)n(K)QJ = Za’Jla---an(K)QJ{ R @ QJ:;(K).

Since J; may not be in admissible form, after applying Adem relations we have
&=

<dK AQ1> < H 1:meAQI> = H nz!AmeQI g

2 m
& Ho dis X, ®AQIJ' > =11 < d,, AQ" >
i= j=1 7 i



Lemma 1. Let A = (a;;) be an nxn matrix such that a;; =0 or 1 for0<14,7 <

n—1
n—1and S ai =n—i. Let also M be an nzl matrix such that M; = p™ or 0
£=0
’ n—1 :
AMY—1 s o summand in T] da%

n, "
1=0

for 0 <i<mn-—1. Then ﬁ h&p‘l
i=1

Proof. This is an application of formula 3.1. W

n—1
Using the lemma above, it is possible to find all summands in [] dpifor m; a
i=0

non-negative integer.

t—1
n _ e (P‘l)zmi o
Lemma 2. Let D = [] dpi. Then h'(P™™ = [T h, " and (hI(Dm‘“)) =
i=1 f=1

n—1 n—1
pn—lmu+ Z (pn_l—p‘_l)mi pn—Z (m0+m1)+ Z (pn—Q_pi-—:Z)mi
1=2

i=1

n—1 n—1
Pn_t(m0+4--+m:—1)+ Z (pn—t_pt—t)mi Z m;
i=t o

Q

Proof. All possible summands in ﬁ d: are given by
=1

1=

(L H )

i=0 \1<j1<-<jn—i<n s=1

t

Lemma 3. Let Q! € B'[n| be the hom-dual of (H (h’;_l)pn_z). Then Q! =

j=1
(dnni)” in R'[n] (after applying Adem relations).

Proof. For the shake of simplicity, we write I instead of Q7. By hypothesis
I=(p*,..,p"%0,..,0) (we recall that this is the biggest sequence among those
involved in (3.1) after theorem 1.3). Let us call it I'max (i) and we apply Adem
relations between the last n-i+1 elements of I ((p"~%,0,...,0)). The last sequence
becomes (p"~t —p™~71, ...,p—1, 1), because of excess and the binomial coefficients
in the Adem relations: pk — p"~* < 0 and ((:)’k__l;f:} ) £ Omodp = k = p"~+L.
Next we consider the first i elements of the new sequence: (p™~!,...,p" !, p*~* —
p*~*"1). Again, it becomes (p"~! — p*~i71,pn72, ..., p"") for the same reasons:
pk +pn-t—1 _pn—zwl <t pn—t +pn—t—1 _pn—z_l and ((p*l)(k—p:k_*prl:f,ﬂ i 1)_1) #
Omodp = k = p*»*1 . Next we consider the first i+1 elements of the new
sequence, (p"~! — p*~71,p" 2, ..., p" ¢, p"mi~t — p*~i72) which becomes, (p"7 —
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pr=il, =2 — pnmi=2 =3 p"i71) for the same reasons. After n-i-2 steps, the
following sequence is obtained (p"~* —p**~',p* —1,p*" %, ..., p, 1) which represents
the required element. W

i n—i+s—js
Lemma 4. Let Q' € B'[n] be the hom-dual of( I1 (h‘?:l)p ) in (3.1) (page

s=1

). Here1 < j; < ... < j; < n. Then A(Q") = (dnpn—)” in R'[n].

Proof. The sequence [ is given by:

i _ _ o : -y o \
SOl gty PR L S il Rl e
=1 t=2 o Jim2—h1

v

pn—je (pjﬁji—z—l - pji—ji—z—Z) St pnj;i—l‘l(pji—l—ji—Z—l _ pji—l‘ji—?‘z)’ e
pn_ji (pJ:z'—ji—l _ pji"ji—l_]-) 2 pn—ji—-l—l,

pn—ji (pji“'ji—l_l _ pji—ji—l—z)’ — ’pn—ji (p — 1),pn_ji, 0,---,0
- i e e
Ji—Ji-1 n—ji /

Here p™ := 0, whenever m < 0. We shall work out the first steps to describe
the idea of the proof. First, we consider the last n — i + 1 elements of Lo (1)1
(p™,0, ...,0) which becomes (p"~* —p"~*71, ..., pv It — pn~di pn=E 0, ..., 0). Ap-
plying Adem relations on certain positions on Q=) Q! is obtained. Next,
the n — i + 2 elements of the new sequence (p" i+, pn—t — pn—i=1 . pPoit! —
pn—ji’pnﬁj;, O, _ U) becomes (pn—i-t-l_pn.—i—l, pn—z’ _pn—i—Q’ . pn—j,-_l—l-l _pn—j,'_lﬁl’
p”_ji‘l, pn—ji—l—l — p”’ji—l_z’ “.,pn_jiJO? o 0)

At each stage a new subsequence I; of length n — ¢ + t is given by the last
one (of length n — i + ¢ — 1) enlarged by the i — ¢t element of I, (i). Applying
Adem relations between the last n — i+t — (n — j;) = J: — ¢ + t elements of I,
the obtained sequence has the required form. M

Proposition 5. Let Q7 € B'[n] be the hom-dual of a monomial k’ € H, such
that |h’| = 2(p® —p™*) and h’ is not a summand in (3.1) (page ). Then
A(Q") =0 in R'[n)].

Proof. Two cases should be considered: 1) hj, - - - h;, divides both hy - -+ h, and
h’, for some 1 < j; < --- < j; < m; and 2) hy, -+ - h;, does divide hy - - - hn, but
not A7, for any 1 < j; < --+ < j; < n. Let j;_; be the biggest index such that



(R2_1)P"7"* does not divide h”. Let us start with 1) and recall that (h7)* equals

n—1 n—i—1

n—7ji n—ji—t—1—1 n—ji—t—1—2-1 n—ji—t
D —D vt P PR —D Y & )
o — : e e -
J1 Ji‘t?_h Jimt—Ji—t—1
n—ji—2—1 n—ji—2—3 | n—Ji-1
NUEEr 4 2 —P ' ) D ' )
. P W
Ji—27Ji—t Jim1—Ji—2
n—j;—1—1 n—7ji—1—2 n—7J; n—ji
p de1 - P it Y 2 :(p—l)ap 1105"'10
h - . :
Ji—Ji-1 n—ji

Again, we should consider two cases, namely: i) p™"~Ji-t has been replaced by
p =t —m(t) and ii) p"¥-+—F — pr~Fi-+—*=(-1) has been replaced by p*F—t7F —
pn—ji_t—k—(t—l) —l—m(t)

i) Let us start with m(t) > 0. The last n — j;_; + 1 elements of the sequence
becomes (p"~Ji-t — m(t), p?F-tTt — prioet L pttl— 1, pt72 .. p, 1) after ap-
plying Adem relations. Because of excess and Adem relations, ptJi-t~1 divides
m(t) and hence p"Ji-t~! = m(t) which is case ii).

Now let m(t) < 0. As before: (p*~%-¢ — m(t),p"Ji—t"1 — prdi=e=t, .o pHot —

1,p72,---,p,1) after applying Adem relations. Because of excess and Adem rela-
tions, the last sequence becomes: (p"Ji-t — p*~%i-t~t prii-eml _ pn—fiamt=l L
pt+1,pt72,-..,p,1) and this gives a zero element.

ii) m(t) < pvdi-e=k=(t=1_ Otherwise, this case reduces to the previous one.
Excess conditions and Adem relations imply m(t) = p*~%-+—%=(=1),

2) The last n — j; + 1 elements of I are given by:
(pn—j: - m(t)’pn—jt—l — pn—jt—2’ ___,pn_ji,O, e 0) =
(p"7 —m(t), priet —prT2 L v — pmitl L p—1,1) . Because of excess
and Adem relations between the first two elements, m(t) = pm;(t) and the previ-
ous subsequence becomes (p* 7 — (p— 1)my (t) —p™ 772, p" 1 —my (1), pri2—
prie3, L pri—priitt L p—1,1). Finally: (p" 7 —(p—1)ma(t)—p" 772, p" 7 -
(p—1)ma(t)—p™ 3, ., ¥ = (p= 1)y (8) =" 72, s p— (p— )1y () —
1,1). Here my(t) = pms41(t) for 1 < s < n—j;. But the last sequence is equivalent
to zero unless m,_;, = 0 and this is a contradiction. B

Now the following theorem is easily deduced because R'[n] is a coalgebra, the
map A is a coalgebra map, and primitives have been considered.

Theorem 6. Let A : B'[n] — R'[n] be the map which imposes Adem relations.
Let i: D, — H, be the natural inclusion. Then A* =i, i.e. for any Q' € B'[n]



n—1
and d¥ = T[] d} € Dy,

=0
< d¥, AQ) >=<1(d"),Q" > .
Next, the algorithm for calculating the hom-dual in (R [n])* is demonstrated.

Example 1. Let p = 3 and d! = d}od}?;, then I = (2,19) and ' = (44,21). To
calculate its dual the following elements should be considered: Q“&17), (IAeds,
QU6.19) Q520 and QU4?Y). The associated elements in Dy, should also be con-
sidered: dé‘f‘od%,l, dé,lod;,u dg,od%,lv dg,od%.sl: and dg,od%?r

i) di4d3, = (QU8M)* (there is only one choice).

ii) dibdl . Find the g.c.d.(dd3,, djod},) = dijod3 ;. Consider (dbhd3,1) /(d3od3,) =
d3, and (dyhdl,)/(d3}yd3,) = dy1. Find their decomposition in I, and consider
their monomials corresponding to the smallest sequences : h32h3?, h3?®. Find the
g.c.d.(h¥2h32, h§?) = k3% Consider the following monomials: (RS *ha2) hi? =
h3? and h42/h3? = h}2. Recall that the dual of the second monomial has no Adem
relations. Check if h3? is a summand in da;. If yes, then (QUBI)* s a sum-
mand in d},,d} | with the appropriate coefficient: dd;, = (QUTI8))* 4 (QUBITY*,
Otherwise , no.

iii) d§ od}} . By repeating steps described above, we obtain: d§,d3} = (QUB19)+ 4
(Q(47,18))* + (Q(48’17))* )

iV) dg,od%i - (Q(45,20})* a3 (Q(éﬁ,lg))* i (Q(47,18))* LR (Q(48’17))*.

V) d%.,od%?l - (Q(44,21))* 4 (Q(45,20))* i (Q(46,19))* xE (Q(47,18))* £ (Q(48,17})*_

Theorem 7. Let d! be an element of D, then the following algorithm calculates
its image in R'[n]*: 1) Find all elements Q7 in R'[n] such that |d'| = |Q7| and
'I < J, and their corresponding d’ in D,. Order them according to the given
ordering.

2) Let d¥ be an element in step 1) corresponding to the biggest sequence among
those not considered. Find the ged(dX,d"). If ged(d®,d") = d¥, then QK =qQ7;
otherwise let dXM) = d¥ / ged(d¥, dl), '™ = d! / ged(d¥,d"). Consider i(d'™) in
H, and find its dual in B'[n]. Let i(d’™) and i(d¢X")) in H, and consider their
monomials k') and hEW associated with the smallest sequences. Divide both
by the greatest common divisor and let h'®) and h* () be the new monomials.
Let us recall that (h¥®)* = Q¥ e R'[n]. Let as,x be the coefficient of h!® in
i(dK®)). Then d! contains a;x(Q")* as a summand. Otherwise, no.

3) Repeat step 2) for all &’ in step 1).
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n—1 n—1
Proof. Let I = ¥ kil;, and k(I) = X k;. Because of the definition of the
t=0 t=0

hom-dual, we have : < d/,Q7 >= 1 and < d/,Q’ >= ay) for a sequence J

such that in the k(I) times iterated coproduct, ¥Q’ = ¥ Q" ® ... ® Q7x» Ademn
Sar,.. LW)QLl ® ... QX0 a(»Q' is a summand. Thus J >’ I. We shall note
here that only primitives are involved in the last summand and all elements in
B[n| which are mapped to primitives by the map which imposes Adem relations
are known.

Let ¥Q'XKW =5 Q1 @ ... @ Q7*u). If there exists QM ® ... ® QM=) in the
k(1(1))
last sum such that QM = Q™ for i = 1,...,k(I(1)) and [ dn, = d'¥, then
i=1

Q'K is a summand in df with the same coefficient.
For the sequence J we consider the corresponding element d” in D,. Let

" n—1
d’ = TI di% such that J >’ I. Then k(I) > k(J'). Consider the common
t=0

elements between df and d”, their associated elements in R[n] will not con-
tribute anything more in the iterated coproduct. Hence, only the non-common
elements must be consider. However, we must check if the associated sequence
of d’'/ged(d”',d!) after the appropriate (the number of common elements are
not considered) iterated coproduct is applied and Adem relations are considered
provides the associated sequence of d’/ ged(d”’, d’). But since all elements which
map to primitives after applying Adem relations are known, this is true exactly
when the conditions of the last part of step 2) are fulfilled. B

Next, the algorithm which calculates Adem relations using modular invariants
is demonstrated.

Example 2. Let p =3 and I = (50, 15). Then A(Q") = 2Q“"18) 4 QU619) ysing
Adem relations in the Dyer-Lashof algebra. We shall also evaluate A(Q") using
the following algorithm.

1) Find all dX’ € D, and corresponding Q¥ € R[n] such that |d¥'| = |Q'| =
2(p — 1)(50 + 15). Using their decomposition in H, check those which contain
(QF)* = hX@EVpL5®=D a5 4 summand. Those are

d%t,lodg,lr QU no;

dihdl,, QUT®), yes with coefficient 2;

d3 odz1, QU*?), no;

d3 o3y, QU9 no;

B, QU no
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2) Calculating their duals:

d%fodg’l = (QU&1M)* (there is only one choice).

d3%ds . Find the g.c.d.(d34d3 |, d3bds ) = d3'yd3 ;. Consider (d%j‘oa’%’l) /(d3ld3,) =
d3 o and (d3d} 1)/ (d3hd3 ) = dé,l and their corresponding sequences in Hy: h32h3?,
hi?. PFind the ged hi?hy?, R3®) = hi®. Consider (AT h3%)/h3* = h}® and
h“ 2/h5% = k3. Check 1fh3 2 jsasummand indy ;. Ifyes then (QU1))* is a sum-
mand in dl,od 5.1 with the appropriate coefficient: dj},dj , = = (QUTI8))* L. (QUBATN)2,
Otherwise , no.

d§od3)y. repeating steps described above, we obtain: djgd}} = (QU619))* +
(Q(47’18))* (Q(48 17))* .

ds Odls (Q(&s 20)) - (Q(46 19)) e (Q(47,18))* .2 (Q(48’17))*-

d (Q(44 21)) 4 (Q(45 20)) (Q(46,19))* 4 (Q(47,18))* ) (Q(48'17))*.

3) Use the Kronecker product to evaluate A(Q").

Start with d*' such that K’ is the b}ggest sequence where the first non-zero

coefﬁcmnt of (@) = hm(p 1)h15(p Y in dX' appears.
day d%l’A(Q ) >=< ’L(d, 71), Q" >= 2 = QW8 has coefficient 2 in
A(Q )-

= dg,odé,llaA(QI) Bt ;j(dsz,od%,ll), Qf >= 0 = Q“S9) has coefficient 1 in
A@). A

= dg,ﬁd%?lvA(QI) = i(dg,od%ﬁ):QI >= 0 = Q"2 has coefficient 0 in
A@) o

< d3odi?, A(QY) >=< i(d}edd)), Q" >= 0 = Q*?2Y has coefficient 0 in
AQ).

Hence A(QI ) = 2QUT18) | Q46.19)

Now, the following proposition is obvious.

Proposition 8. Let Q' € B[n|. The following algorithm computes A(Q') in
R'[n].

i) Find all sequences K according to the given ordering such that Q¥ € R'[n]
and |Q¥| = |Q!|. Let by x be the coefficients of h' in i(dX").

ii) Compute the duals of dX" in (R'[n])*.

iii) Use the Kronecker product to evaluate A(QY) :

Start with the first non-zero b ,, according to the ordering, then A(Q')
contains ar kQ@%!; < d¥i, A(QY) >= a;x, = brx,. Proceed to the next sequence
K, and use by g, (whether or not is zero) and the dual of d¥: to compute the
coefficient ay i, of @ in A(Q'). Repeat last step for all remaining sequences.
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